Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress.

نویسندگان

  • L M Khachigian
  • N Resnick
  • M A Gimbrone
  • T Collins
چکیده

Hemodynamic forces, such as fluid shear stress, that act on the endothelial lining of the cardiovascular system can modulate the expression of an expanding number of genes crucial for homeostasis and the pathogenesis of vascular disease. A 6-bp core element (5'-GAGACC-3'), defined previously as a shear-stress response element is present in the promoters of many genes, including the PDGF B-chain, whose expression is modulated by shear stress. The identity of the nuclear protein(s) binding to this element has not yet been elucidated. Using electrophoretic mobility shift assays and in vitro DNase I footprinting, we demonstrate that nuclear factor-kappa B p50-p65 heterodimers, which accumulate in the nuclei of cultured vascular endothelial cells exposed to fluid shear stress, bind to the PDGF-B shear-stress response element in a specific manner. Mutation of this binding motif abrogated its interaction with p50-p65 and abolished the ability of the promoter to mediate increased gene expression in endothelial cells exposed to shear stress. Transient cotransfection studies indicate that p50-p65 is able to activate PDGF-B shear-stress response element-dependent reporter gene expression in these cells. These findings thus implicate nuclear factor-kappa B in the transactivation of an endothelial gene responding to a defined fluid mechanical force.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element.

The endothelial lining of blood vessels is constantly exposed to fluid mechanical forces generated by flowing blood. In vitro application of fluid shear stresses to cultured endothelial cells influences the expression of multiple genes, as reflected by changes in their steady-state mRNA levels. We have utilized the B chain of platelet-derived growth factor (PDGF-B) as a model to investigate the...

متن کامل

Hemodynamic forces are complex regulators of endothelial gene expression.

Vascular endothelial cells, by virtue of their unique anatomical position, are constantly exposed to the fluid mechanical forces generated by flowing blood. In vitro studies with model flow systems have demonstrated that wall shear stresses can modulate various aspects of endothelial structure and function. Certain of these effects appear to result from the regulation of expression of endotheli...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors.

The vascular endothelium is exposed to a spectrum of fluid mechanical forces generated by blood flow; some of these, such as fluid shear stress, can directly modulate endothelial gene expression. Previous work by others and in our laboratory, using an in vitro uniform laminar shear stress model, has identified various shear stress response elements (SSREs) within the promoters of certain endoth...

متن کامل

Hypo- and Hyperglycemia Impair Endothelial Cell Actin Alignment and Nitric Oxide Synthase Activation in Response to Shear Stress

Uncontrolled blood glucose in people with diabetes correlates with endothelial cell dysfunction, which contributes to accelerated atherosclerosis and subsequent myocardial infarction, stroke, and peripheral vascular disease. In vitro, both low and high glucose induce endothelial cell dysfunction; however the effect of altered glucose on endothelial cell fluid flow response has not been studied....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 1995